下面是**16年北京高考理数试题及参考答案,学友可参考估分:
北京高考网:
**16年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分.考试时长1**分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
(1)已知集合A= B= ,则
(A) (B)
(C) (D)
(2)若x,y满足 ,则2x+y的最大值为
(A)0 (B)3
(C)4 (D)5
(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为
(A)1
(B)2
(C)3
(D)4
(4)设a,b是向量,则“ ”是“ ”的
(A) 充分而不必要条件 (B)必要而不充分条件
(C) 充分必要条件 (D)既不充分也不必要条件
(5)已知x,y R,且x y o,则
(A) - (B)
(C) (- 0 (D)lnx+lny
(6)某三棱锥的三视图如图所示,则该三棱锥的体积为
(A)
(B)
(C)
(D)1
(7)将函数 图像上的点P( ,t )向左平移s(s﹥0) 个单位长度得到点P′.若 P′位于函数 的图像上,则
(A)t= ,s的最小值为 (B)t= ,s的最小值为
(C)t= ,s的最小值为 (D)t= ,s的最小值为
(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则
(A)乙盒中黑球不多于丙盒中黑球
(B)乙盒中红球与丙盒中黑球一样多
(C)乙盒中红球不多于丙盒中红球
(D)乙盒中黑球与丙盒中红球一样多
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
(9)设a R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________。
(10)在 的展开式中, 的系数为__________________.(用数字作答)
(11)在极坐标系中,直线 与圆 交于A,B两点,
则 =____________________.
(12)已知 为等差数列, 为其前n项和,若 , ,则 .
(13)双曲线 的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点。若正方形OABC的边长为2,则a=_______________.
(14)设函数
①若a=0,则f(x)的最大值为____________________;
②若f(x)无最大值,则实数a的取值范围是_________________。
三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)
(15)(本小题13分)
在 ABC中,
(I)求 的大小
(II)求 的最大值
(16)(本小题13分)A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);
A班 6 6.5 7 7.5 8
B班 6 7 8 9 10 11 12
C班 3 4.5 6 7.5 9 10.5 12 13.5
(I) 试估计C班的学生人数;
(II) 从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(III)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记 ,表格中数据的平均数记为 ,试判断 和 的大小,(结论不要求证明)
(17)(本小题14分)
如图,在四棱锥P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(I)求证:PD 平面PAB;
(II)求直线PB与平面PCD所成角的正弦值;
(II I)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求 的值;若不存在,说明理由。
(18)(本小题13分)
设函数f(x)=xe +bx,曲线y=f(x)d hko (2,f(2))处的切线方程为y=(e-1)x+4,
(I)求a,b的值;
(I I) 求f(x)的单调区间。
(**)(本小题14分)
已知椭圆C: (a>b>0)的离心率为 ,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(I)求椭圆C的方程;
(I I)设P的椭圆C上一点,直线PA与Y轴交于点M,直线PB与x轴交于点N。
求证:lANl lBMl为定值。
(**)(本小题13分)
设数列A: , ,… (N≥2)。如果对小于n(2≤n≤N)的每个正整数k都有 < ,则称n是数列A的一个“G时刻”。记“G(A)是数列A 的所有“G时刻”组成的集合。
(I)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(I I)证明:若数列A中存在 使得 > ,则G(A) ;
(I I I)证明:若数列A满足 - ≤1(n=2,3, …,N),则G(A)的元素个数不小于 - 。
**16年普通高等学校招生全国统一考试
数学(理)(北京卷)参考答案
一、选择题(共8小题,每小题5分,共40分)
(1)C (2)C (3)B (4)D
(5)C (6)A (7)A (8)B
二、填空题(共6小题,每小题5分,共30分)
(9) (10)
(11) (12)
(13) (14)
三、解答题(共6小题,共80分)
(15)(共13分)
解:(Ⅰ)由余弦定理及题设得 .
又因为 ,所以 .
(Ⅱ)由(Ⅰ)知 .
,
因为 ,所以当 时, 取得最大值 .
(16)(共13分)
解:(Ⅰ)由题意知,抽出的 名学生中,来自 班的学生有 名.根据分层抽样方法, 班的学生人数估计为 .
(Ⅱ)设事件 为“甲是现有样本中 班的第 个人”, ,
事件 为“乙是现有样本中 班的第 个人”, ,
由题意可知, , ; , .
, , .
设事件 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,
因此
(Ⅲ) .
(17)(共14分)
解:(Ⅰ)因为平面 平面 , ,
所以 平面 .
所以 .
又因为 ,
所以 平面 .
(Ⅱ)取 的中点 ,连结 .
因为 ,所以 .
又因为 平面 ,平面 平面 ,
所以 平面 .
因为 平面 ,所以 .
因为 ,所以 .
如图建立空间直角坐标系 .由题意得,
.
设平面 的法向量为 ,则
即
令 ,则 .
所以 .
又 ,所以 .
所以直线 与平面 所成角的正弦值为 .
(Ⅲ)设 是棱 上一点,则存在 使得 .
因此点 .
因为 平面 ,所以 平面 当且仅当 ,
即 ,解得 .
所以在棱 上存在点 使得 平面 ,此时 .
(18)(共13分)
解:(Ⅰ)因为 ,所以 .
依题设, 即
解得 .
(Ⅱ)由(Ⅰ)知 .
由 即 知, 与 同号.
令 ,则 .
所以,当 时, , 在区间 上单调递减;(责任编辑:haoxuee)
学友请微信搜索好学网,或加公众号 haoxueecom 获取更多学习资讯!
|